Blueprint: Histone ChIP

To obtain the highest DNA yield, with the least amount of background from $5x10^5$ cells, the most optimal experiment is described below. Chromatin is sonicated such that the final concentration is $15*10^6$ cells/ml, therefore take 33μ l chromatin per ChIP.

1. ChIP

1. Mix the following reagents together.

	ChIP (µl)
Chromatin	33
Dilution buffer (No SDS)	255 (-μl Ab)
Protease Inhibitor Cocktail (25x)	12
Ab	*
Total volume	300

^{*} Use the antibody amount written in the table below.

Mark	Use per ChIP
H3K4me3	1 μg
H3K36me3	0,5 μg
H3K27ac	1 μg
H3K4me1	0,5 μg
H3K27me3	1 μg
H3K9me3	2 μg

2. Rotate overnight at 4°C.

2. Preparation protein A/G magnetic beads:

- 1. For 1 ChIP sample take 10 μ l protein A beads and 10 μ l protein G beads. (E.g. for 10 ChIPs take 100 μ l protein A beads and 100 μ l protein G beads)
- 2. Wash the beads with 500 μ l dilution buffer (+0.15% SDS) + 0,1% BSA. (for example: 2ml dilution buffer with 20 μ l 10% BSA stock)
- 3. Short spin down the beads and place them in a magnetic rack for 1 minute, remove supernatant.
- 4. Repeat step 2 and 3.
- 5. Dissolve the beads in 20 μ l dilution buffer(+0.15% SDS) + 0,1% BSA per ChIP.
- 6. Add 20 μ l washed beads to the chromatin + Ab mix.
- 7. Rotate 60 minutes at 4°C.
- 8. Wash the beads with 400 μ l buffer for 5 minutes at 4°C with the following buffers:
 - ChIP wash 1 1x
 - ChIP wash 2 2x
 - ChIP wash 3 2x

(Short spin down in between the wash steps and place in a magnetic rack for 1 minute, remove supernatant.)

- 9. Transfer samples to a new tube after washing, remove last wash buffer and add 200 μ l freshly made elution buffer each.
- 10. Rotate 20 minutes at RT.
- 11. Short spin down the beads and place them in a magnetic rack for 1 minute.
- 12. Collect supernatant.
- 13. Add 8 μ l 5M NaCl and 2 μ l proteinase K (10mg/ml) to each 200 μ l of supernatant.
- 14. As control an input sample will be made as follows: Take 33,33 μ l chromatin and add 366,67 μ l elution buffer, 16 μ l 5M NaCl and 4 μ l proteinase K (10mg/ml).
- 15. Shake the samples at 1000 rpm on 65°C for at least 4 hours. (decrosslinking)

3. Column purification (Qiagen; QIAquick MinElute PCR Purification Kit (Cat: 28006):

- 1. Add 5 volumes PB buffer (i.e. 1ml) to each decrosslinked sample and add 40 μ l 3M NaAc pH 5,2.
- 2. Load 700 μl of your decrosslinked sample onto one MinElute column.
- 3. Centrifuge 1 minute at 13.000 rpm, remove flow through.
- 4. Repeat step 2 and 3 until all sample has been loaded onto the MinElute column.
- 5. Wash with 700 μl PE buffer.
- 6. Centrifuge 1 minute at 13.000 rpm, remove flow through.
- 7. Centrifuge again 1 minute at 13.000 rpm, to dry the column.
- 8. Put the column in a new tube.
- 9. Add 10 μl EB buffer to elute.
- 10. Put the tube 1 minute on 37 °C.
- 11. Centrifuge 1 minute at 13.000 rpm.
- 12. Repeat step 9, 11, 12.
- 13. Pool the two eluted samples together.

Buffers:

ChIP dilution buffer (100 ml):

Stock	Final concentration	Volume stocksolution (ml)
10 %	0,15 % SDS	1,5
20 %	1,0 % Triton	5
0,5 M	1,2 mM EDTA	0,24
1 M	16,7 mM Tris (pH 8,0)	1,67
5 M	167 mM NaCl	3,34
MilliQ		Fill up to 100 ml

ChIP wash 1 (400 ml):

Stock	Final concentration	Volume stocksolution (ml)
0,5 M	2 mM EDTA	1,6
1 M	20 mM Tris (pH 8,0)	8
20 %	1 % Triton	20
10 %	0,1 % SDS	4
5 M	150 mM NaCl	12
MilliQ		Fill up to 400 ml

ChIP wash 2 (400ml):

Stock	Final concentration	Volume stocksolution (ml)
0,5 M	2 mM EDTA	1,6
1 M	20 mM Tris (pH 8,0)	8
20 %	1 % Triton	20
10 %	0,1 % SDS	4
5 M	500 mM NaCl	40
MilliQ		Fill up to 400 ml

ChIP wash 3 (TE) (1000 ml):

Stock	Final concentration	Volume stocksolution (ml)
0,5 M	1 mM EDTA	2
1 M	10 mM Tris (pH 8,0)	10
MilliQ		Fill up to 1000 ml

Elution buffer (50 ml)

Stock	Final concentration	Volume stocksolution (ml)
10%	1% SDS	5
1 M	0,1 M NaHCO3	5
MilliQ		Fill up to 50 ml

Questions and/or remarks:

Please contact

Kim Berentsen (K.Berentsen@science.ru.nl) or

Eva Janssen-Megens (E.Janssen-Megens@science.ru.nl)

telephone: +31-24-3610527.